Lizinovka36.ru

Лизиновка

Поликомб репрессорные комплексы

21-04-2023

Перейти к: навигация, поиск

Белки группы polycomb (англ. Polycomb-group proteins, PcG) — это семейство белков, которые способны ремоделировать хроматин.[1] Эти белки-регуляторы были впервые описаны у дрозофил[1], где они подавляют гомеозисные гены, контролирующие индивидуальные отличия сегментов развивающегося эмбриона[2][3][4].

Белки группы поликомб (PcG) представляют собой семейство эпигенетических регуляторов, которые, модифицируя гистоны, подавляют активность множества генов, отвечающих за клеточную дифференциацию.[5][6][7] Садясь на хроматин, чтобы вызвать локальные и глобальные изменения в хромосомной конформации, белки группы polycomb регулируют организацию их генов-мишеней в трёхмерном пространстве ядра. Влияя на 3D архитектуру генома, они участвуют в регуляции процессов дифференциации клеток и поддержания клеточной памяти[8]. Они так видоизменяют структуру хроматина, что транскрипционные факторы не могут связываться с промоторными последовательностями ДНК[9][10].

Классификация

В организмах животных (дрозофилы, млекопитающих) и растений выявлено по меньшей мере пять типов комплексов содержащих белки поликомб:

  • ингибиторный комплекс 1 (polycomb repressive complex 1, PRC1)[11];
  • ингибиторный комплекс 2 (PRC2)[12];
  • ингибиторный комплекс Pho (PhoRC), содержащий ДНК-связывающие белки Pho (Pleiohomeotic) и dSfmbt (Scm-like with four mbt domains), а также, по некоторым данным, гистондеацетилазу Rpd3, шаперон гистонов NAP1, негистоновый белок HP1b, связывающий хроматин и неохарактеризованный белок CG3363[13];
  • комплекс dRing (Drosophila Ring) связанных факторов (dRAF), который состоит из белков dRing/Sce (Sex combs extra), Psc (Posterior sex combs), и dKdm2 (лизин деметилаза гистонов дрозофилы)[14][15]
  • репрессорный комплекс деубиквитиназ (PR-DUB).[16]

PcG млекопитающих

У млекопитающих найдены две основные группы, содержащие комплексы белков группы polycomb — это ингибиторные комплексы 1 и 2 (PRC1 и PRC2), гены PRC1 млекопитающих значительно схожи с соответствующими генами дрозофилы. Показано, что экспрессия генов группы polycomb имеет большое значение развитии зародыша; мыши, нокаутные по обеим копиям генов PRC2 погибают на стадии зародыша, в то время как нокауты по генам PRC1 являются гомеозисными мутантами и погибают после рождения[12]. Повышение уровня экспрессии белков группы polycomb повышает инвазивность и коррелирует с более тяжелым развитием раковых опухолей.

Комплекс PRC1

Комплекс PRC1 состоит из нескольких субъединиц:[17][18][19]

  • PHC1 и PHC2 (polyhomeotic) — точная функция пока не ясна.
Метилирование лизина (К)
  • Семейство субъединиц CBX, которые участвуют в механизмах поддержания баланса между самообновлением и дифференцировкой стволовых клеток:[20] (субъединицы CBX2, CBX4 и CBX8 — связываются с гистоном Н3К27me3, ингибируют экспрессию гена CBX7[18], необходимого для поддержания плюрипотентного состояния клетки и таким образом способствуют дифференцировке клеток,[21][22] в свою очередь CBX7-ингибирует синтез субъединиц CBX2, CBX4 и CBX8, необходимых для дифференцировки, и таким образом поддерживает плюрипотентное состояние клетки). Белок CBX7 (а через него и весь комплекс PRC1) связывается с гистоном H3K27me3 нуклеосомы с помощью своего хромодомена. Разработаны малые молекулы, содержащие триметиллизин, способные предотвратить образование комплекса CBX7-H3K27me3.[23]
  • Bmi1 — необходима для пролиферации стволовых клеток.[24][25] Это связано с тем, что она подавляет экспрессию белков p16Ink4a[26] и p19Arf (оба эти белка кодируются альтернативными рамками считывания локуса Ink4a/Arf, известного также как Cdkn2a), препятствующих перепрограммированию в индуцированные плюрипотентные стволовые клетки (ИПСК). Кроме того Bmi1 может замещать транскрипционные факторы Sox2, Klf4 и c- Myc при перепрограммировании фибробластов в ИПСК.[27] Предполагается, что Bmi1 контролирует работу митохондрий и образование в них реактивных форм кислорода способных вызвать повреждения ДНК.[28] Количество Bmi1 в клетке регулируется микроРНК-141, которая, подавляет его синтез, связываясь с его мРНК в 3' нетранслируемой области.[29]
  • PCGF2 (Polycomb group RING finger protein 2) ортолог Bmi1. Функционально не отличается от Bmi1.[30]
  • PCGF6 был найден в комплексах PRC1, которые имеют H3K9 метилтрансферазу и тех, которые имеют активность H3K4 деметилаз[31]. Pcgf6 необходим для поддержания идентичности эмбриональных стволовых клеток (ЭСК). В отличие от канонической PRC1, комплексы с Pcgf6 действуют как позитивный регулятор транскрипции и связываются преимущественно с промоторами, несущими активные метки хроматина. Уровень синтеза Pcgf6 в ЭСК обычно высок и необходим для того чтобы препятствовать дифференциации, так как Pcgf6 необходим для поддержания синтеза транскипционных факторов Oct-4, Sox2 и Nanog[32].
  • RYBP или его гомолог YAF2-субъединица альтернативного комплекса RYBP-PRC1,[18] который содержит RYBP, RING1B, и PCGF2/ Bmi1 и не содержит CBX, PHC, SCM субъединиц.[33] Для активации RYBP требуется подавить "созревание" микроРНК-125b, которая ингибирует RYBP. Активация RYBP приводит к RYBP-зависимому убиквитинированию H2AK119 и подавлению генов необходимых для дифференцировки. Кроме того, RYBP требуется для посадки OCT4 на промотор Kdm2b (ген гистондеметилазы), что необходимо для успешной активации эндогенных генов плюрипотентности при перепрограммировании клеток в ИПСК.[34]
  • RING1-субъединица комплекса PRC1 которая осуществляет моноубиквитинирование гистона H2A с образованием H2A K119ub. Удаление гена Ring1B приводит к потере сразу нескольких PRC1 белков, в том числе RYBP, Cbx4, PCGF2 и Bmi1[35].
  • SUV39H1 (histone-lysine N-methyltransferase)-Этот ядерный белок во время митоза перемещается к центромерам. Он играет важную роль в организации хроматина, разделении хромосом и в механизмах митоза, функционируя как метилтрансфераза метилирующая лизин-9 гистона H3 с образованием Н3К9me3 — метки репрессии[36].
  • L3mbtl2 член атипичного комплекса PRC1. Он имеет важное значение для раннего эмбрионального развития. Способствует пролиферации клеток и подавляет дифференциацию. Взаимодействует с факторами плюрипотентности и аналогом PRC1 содержащим G9A, Hdac1 и Ring1b.[37]

Комплекс PRC1 ингибирует экспрессию генов и переводит хроматин в компактную форму[18][38] — гетерохроматин. С помощью субъединицы CBX он связывает «метку репрессии» — гистон Н3К27me3 в составе нуклеосомы. Кроме того, с помощью субъединицы Bmi1, комплекс связывает нуклеосомы через комплекс транскрипционных факторов Runx1/CBFβ независимо от метки Н3К27me3. С помощью субъединицы RING1, стимулируемой субъединицей Bmi1 или RYBP, PRC1 осуществляет моноубиквитинирование гистона H2A с образованием H2A K119ub, что приводит к компактизации хроматина. Кроме того с помощью субъединицы CBX7 он способствует связыванию длинных некодирующих РНК (lncRNA) c промоторными областями, что приводит к ингибированию соответствующих генов.[39][40] CBX7 в этом случае играет роль «кепирующей» шапочки, предотвращающей деградацию lncRNA с последующей «незапланированной» активацией гена.

Комплекс PRC2

Комплекс PRC2 вызывает репрессию транскрипции путём метилирования гистонов и негистоновых белков. Для его посадки на ген-мишень необходима метка активного хроматина Н3К4me3 (в образовании которой важную роль играют белки группы Trithorax) и специальная некодирующая РНК, связывающая субъединицу SUZ12.[12] Комплекс PRC2 имеет сложную молекулярную архитектуру[41] и состоит из нескольких субъединиц:

  • Ezh1 помогает удерживать PRC2 на хроматине покоящихся клеток, в которых не идет синтез Jarid2[42].
  • EZH2 (Enhancer of Zester Homolog 2) — метилтрансфераза гистонов и негистоновых белков. Ezh2 обычно присутствует в клетках которые слабо дифференцированы и активно делятся[42]. EZH2 необходим для восстановления тканей, способствует регенеративной пролиферации прогениторных клеток. Потеря EZH2 приводит к нарушению регенерации, тогда как избыточный синтез метилтрансферазы EZH2 приводит к неопластической трансформации клетки, а мутации в её каталитическом домене приводят к лимфоме. Помочь борьбе с этими заболеваниями может GSK126, которая с высокой избирательностью ингибирует EZH2, конкурируя при этом с S-аденозил-метионином (SAM), в результате чего снижается уровень метилированных H3K27 и активируются гены-мишени, подавляемые PRC2.[43][44][45] Гистон H3 имеет несколько изоформ, одна из которых — гистон H3.3 (содержащая в позиции 31 аминокислотной последовательности треонин) присутствует только в тех местах, где гены активны, тогда как изоформа H3.1 (содержащая в позиции 31 аланин) встречается главным образом в частях генома, где нет активных генов. Это объясняется тем, что гистон H3 лизин-27 (H3K27) метилттрансфераза ATXR5 (англ. ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5) имеет домен, который, «прочитав» треонин-31 (вместо аланина-31) в гистоне H3 ингибирует метилттрансферазную активность ATXR5. Поэтому изоформа H3.3 не может быть модифицирована меткой H3K27me1. Таким образом, участки генов, содержащих большое количество гистонов H3.3, защищены от гетерохроматизации и подавления активности во время репликации ДНК[46]
  • EED (англ. embryonic ectoderm development) — субъединица комплекса PRC2 функция которой пока не вполне понятна. Предполагается что она обладает способностью связывать как с белки комплекса PRC2, так и белки комплекса PRC1. Таким образом, EED консолидирует белки комплекса PRC2 и помогает последующей посадке комплекса PRC1 на трижды метилированый локус H3K27 гена-мишени, а также повышает убиквитинлигазную активность PRC1[47]
  • SUZ12 (англ. Suppressor of Zeste 12) — субъединица, связывающая короткие некодирующие РНК длиной 50-200 нуклеотидов, экспрессируемые с 5'-конца генов-мишеней polycomb в первичных T-лимфоцитах и зародышевых стволовых клетках[48]
  • Jarid2 (англ. jumonji, AT rich interactive domain 2) — деметилаза гистонов, один из ключевых эпигенетических регуляторов процессов развития. Jarid2, также как и Ezh2 обычно присутствует в клетках, которые слабо дифференцированы и активно делятся[42], функционирует как транскрипционный репрессор генов-мишеней. Предполагается что JARID2 взаимодействует с некодирующими РНК (lncRNA) и комплексом PRC2 и таким образом регулирует связывание PRC2 с хроматином[49][50]. Синтез Jarid2 значительно повышен в ЭСК по сравнению с дифференцированными клетками. Нокдаун этой субъединицы приводит к активации генов, связанных с дифференцировкой клетки и существенно снижает возможность перепрограммирования фибробластов в ИПСК.[51]
  • Mtf2 (англ. metal response element binding transcription factor 2) известен также как PCL2 (англ. polycomb-like 2). Нокдаун гена этой субъединицы приводит к активации генов, связанных с дифференцировкой клетки, и существенно снижает возможность перепрограммирования фибробластов в ИПСК[52]
  • esPRC2p48 — экспрессируется в эмбриональных стволовых клетках мыши на более высоком уровне, чем в дифференцированных клетках. Коэкспрессия генов JARID2, MTF2, и esPRC2p48 усиливает Oct4/Sox2/Klf4-опосредованное репрограммирование эмбриональных фибробластов мыши в индуцированные плюрипотентные стволовые клетки.
  • Mdm2 (англ. Mouse double minute 2 homolog) физически связываясь с EZH2 на хроматине, поддерживает Polycomb-опосредованную репрессию ряда генов, способствуя повышению триметилирования гистона 3 по лизину 27 и убиквитинирования гистона 2А на лизине 119 (H2AK119). Удаление или инактивация MDM2 одновременно с H2AK119 E3 лигазой Ring1B / RNF2 останавливает пролиферацию клеток, независимо от р53[53] Митогенная роль MDM2 необходима для заживления ран при повреждении тканей. Вместе с тем MDM2 способствует воспалению тканей[54].

Длинные и короткие некодирующие РНК (lncRNA и miRNA)

Длинные некодирующие РНК (lncRNA) взаимодействуют с хроматином и ингибируют транскрипцию соответствующих генов, помогают комплексам PRC2 и PRC1 выбрать ген-мишень[55][56][57]. Обнаружено, что для lncRNA гораздо больше выражена тканевая специфичность по сравнению с кодирующими РНК, что делает их привлекательными диагностическими маркерами[58].

  • Kcnq1ot1 — взаимодействует с PRC2 и PRC1, ингибирует кластер Kcnq1.[59]
  • Xist — взаимодействует с PRC2, участвует в модификации гистонов Х-хромосомы[60][61] В ходе инактивации Х-хромосомы продукт Xist распределяется по эухроматиновым участкам на вблизи теломер Х-хромосомы согласно их трехмерной структуре, но не нуклеотидной последовательности[62][63][64]. Для того чтобы Xist взаимодействовала с PRC2 и посадила его на Х-хромосому необходимы белки SHARP (SMRT and HDAC associated repressor protein), который взаимодействует с SMRT корепрессором[65] и Гистондеацетилаза 3 HDAC3[66][67].
  • HOTAIR — взаимодействует с PRC2 и ингибирует НОХ локус[68][69].
  • ANRIL — взаимодействует с PRC1 и PRC2. Вызывает ингибирование комплексом PRC1 локуса INK4b/ARF/INK4a, ответственного за подавление опухолевого роста путём активации старения клетки[70]
  • Gtl2 (Meg3) является lncRNA регулирующей импринтинг в локусе Dlk1-Dio3.[71] Она непосредственно связывается с PRC2. Нокдаун Gtl2 в эмбриональных стволовых клетках мыши приводит к снижению содержания Ezh2 на промоторе Dlk1 и активации экспрессии Dlk1[72]. ИПСК у которых синтез Gtl2 подавлен не способны к нормальной дифференцировке о чём свидетельствует их неспособность дать начало химерным мышам и мышам состоящим только из ИПСК[73]
  • Fendrr — играет важную роль в регуляторных сетях, контролирующих образование мезодермы. Она участвует в эпигенетической модификации генных промоторов. Связываясь с комплексм PRC2, она действует как модулятор хроматина изменяющий активность соответствующих генов. В эмбрионах у которых не хватает Fendrr, нарушается развитие стенок сердца, которое связано с резким сокращением числа PRC2 и уменьшением H3K27 триметилирования на промоторных участках.[74]
  • Pint (p53 индуцированный некодирующий транскрипт) является длинной межгенной некодирующей РНК (lincRNA) регулируемой p53. Pint способствует пролиферации и выживанию клеток путём регуляции экспрессии генов TGF-бета, МАРК и р53 путей. Pint является ядерной lincRNA, которая непосредственно взаимодействует с PRC2 и требуется для адресной доставки PRC2 на конкретные гены для три-метилирования H3K27 вызывающего их репрессию. Pint участвует в механизме негативной ауторегуляции p53 где lincRNA соединяет активацию р53 с эпигенетической репрессией вызванной PRC2[75].
  • lncRNA H19/miR-675 способна активировать пролиферацию клеток, подавляя синтез транскрипционного фактора RUNX1[76], а также связываясь с промотором поликомб белка EZH2[77]. Кроме того она, связывает как молекулярная губка микроРНК lethal-7 (let-7)[78], которая играет важную роль в синтезе EZH2[15] и взаимодействуя с белком MBD1 (methyl-CpG-binding domain protein 1) участвует в поддержании репрессивных H3K9me3 гистоновых меток, необходимых для подавления сети импринтинга генов[79], что в свою очередь необходимо для контроля за уровнем экспрессии факторов роста у эмбрионов. H19 в изобилии синтезируется в эмбриональных тканях, но строго подавляется после рождения. Существенная транскрипция её сохраняется только в скелетных мышцах, где она необходима для дифференцировки сателлитных клеток в зрелые мышечные клетки и регенерации[80] .
  • lncRNA FAL1 (focally amplified on chromosome 1), является онкогенной РНК, регулирующей стабильность Bmi1, что приводит к изменению транскрипции ряда генов, в том числе к ингибированию CDKN1A/p21. Репрессия синтеза FAL1 препятствует росту опухолей, но активирует старение[81]
  • lncRNA MIR31HG взаимодействует с белками группы Polycomb и вместе с ними участвует в репрессии локуса INK4A в механизме активирующем старение при онкогенезе - важном механизме подавления роста опухолей[82].

Факторы транскрипции

  • Транскрипционный фактор REST, известный также как NRSF (neuron-restrictive silencer factor) — ингибирует связывание PRC1 и PRC2 с участками вблизи промотора и, связываясь с субъединицей CBX, способствует независимой от метки Н3К27me3 посадке PRC1 на участки отдаленные от промотора[83]. Интересно отметить, что REST сильно коррелирует с увеличением продолжительности жизни. Уровни REST были самыми высокими в мозгах людей, которые дожили до 90 — 100 лет и при этом не заболели деменцией[84].
  • Runx1/CBFβ (runt-related transcription factor 1/Core-binding factor subunit beta) - может взаимодействовать с SUV39H1 и с субъединицей Bmi1 комплекса PRC1.[85] Runx1 является фактором транскрипции, регулирующим дифференциацию гемопоэтических стволовых клеток в зрелые клетки крови. Белки Runx образуют гетеродимерный комплекс с CBFβ , что увеличивает стабильность его связи с ДНК.
  • Транскрипционный фактор YY1 (Yin and Yang 1)[86] — Транскрипционный фактор YY1 совместно с Id1 подавляет синтез белка p16 предотвращая таким образом клеточное старение.[87] Он необходим для посадки RYBP-PRC1 на промотор.

Схема эпигенетической регуляции комплексами PRC2 и PRC1

Схема эпигенетической регуляции комплексами PRC2 и PRC1. Сокращения: лизин (К), серин (S), фосфат (p), ацетат (ac), метил (me).

Для того чтобы комплекс PRC2 точно попал на необходимый участок гена-мишени он должен связаться с короткой некодирующей РНК, которая транскрибируется с 5′ конца гена-мишени подлежащего репрессии. Помогает посадке комплекса PRC2 на сайты подлежащие репрессии очевидно также РНК-связывающий белок RBFox2, поскольку его инактивация приводит к дерепрессии генов[88]. Транскрипцию этой РНК осуществляет РНК-полимераза II- S5p с промотора гена активированного меткой H3K4me3. Только после того как PRC2 свяжется с этой РНК с помощью его субьединицы SUZ12, он становится способен метилировать лизин 27 гистона Н3 в составе нуклеосомы, контролирующей ген-мишень. Однако для этого лизин 27 предварительно должен быть деацетилирован комплексом NuRD[89][90]. После того как PRC2, с помощью его субьединицы EZH2, осуществляет тройное метилирование гистона Н3 с образованием H3K27me3, в действие вступает PRC1, который связывается с нуклеосомой либо через «метку репрессии» — H3K27me3, которую узнает его субъединица CBX, либо через один из транскрипционных факторов (REST, YY1 или Runx1/CBFβ).[91] Далее PRC1 закрепляет ингибирование гена проводя посадку убиквитина на лизин 119 гистона H2A (H2A K119ub).

Тот факт, что установка меток H3K27me3 обычно происходит в промежуток клеточного цикла предшествующий репликации ДНК, позволяет предположить, что модификации гистонов белками Поликомб играют важную роль в сохранении эпигенетической памяти во время деления клетки[92][93][94]

Показано, что сами по себе изменения в транскрипционной активности могут регулировать модификацию H3K27me3 гистонов. Отмены транскрипции, вызванной удалением сайта начала транскрипции достаточно, чтобы вызвать накопление H3K27me3. С другой стороны, принудительной активации транскрипции с помощью искусственного dCas9-активатора достаточно, чтобы удалить метку H3K27me3[95].

Важно также отметить, что опосредованное комплексом PRC2 триметилирование лизина 27 в гистоне H3 и связанное с ним ингибирование ряда генов являются необходимым условием перепрограммирования соматических клеток в ИПСК[6][96][97]

Бивалентные участки хроматина

В последнее время внимание многих исследователей привлекают гены называемые бивалентными, потому что они имеют как маркеры репрессии (H3K27me3), так и маркеры активации (H3K4me3)[98][99], выполняющие роль аллостерических регуляторов[100]. Ферментом, который катализирует H3K4 триметилирование на бивалентных промоторах генов регулирующих развитие, таких как гены Hox из эмбриональных стволовых клеток, является член семейства COMPASS, называемый Mll2 (KMT2b).[101] Маркер H3K4me3 нужен для транскрипционной активности РНК-полимеразы II — S5p, синтезирующей короткую некодирующую РНК, необходимую при посадке PRC2, тогда как H3K27me3 необходим для связывания CBX белков комплекса PRC1. Бивалентные участки хроматина присутствуют у эмбрионов начиная со стадии 8 клеток вплоть до стадии бластоцисты, при которой клетки подразделяются на две популяции: внутренние клетки, из которых образуются эмбриональные стволовые клетки и поверхностный слой эмбриона (трофобласт). Набор генов клеток поверхностного слоя все ещё содержит бивалентные гены, однако на этих участках уже нет PRC1, хотя все ещё есть PRC2. Ключевую роль в этих клетках уже выполняют Suv39h1, которая катализирует в бивалентных генах триметилирование лизина 9 в гистоне H3 (H3K9me3)[102] и комплекс G9a/GLP, который выполняет ту же функцию но с участием комплекса PRC2[103]. Метка H3K9me3 препятствует перепрограммированию соматических клеток в индуцированные стволовые клетки, так как мешает посадке белковых репрограммирующих факторов плюрипотенции (Oct4, Sox2, Klf4, и c-Myc) на гены мишени. Инактивация ферментов, которые вызывают эту метку значительно увеличивает темпы перепрограммирования.[104] Обнаружено, что два типа маркеров репрессии — модификации H3K9me2 и H3K27me3 — являются взаимоисключающими.[105] В процессе дифференцировки эмбриональных стволовых клеток бивалентные гены исчезают,[106] оставаясь только в менее дифференцированных клетках, таких как взрослые стволовые клетки, кроветворные (гемопоэтические) клетки и сателитные (прогениторные) клетки организма. Однако они возникают при пролиферации клеток вследствие регенерации или опухолевого роста.[107][108][109] При перепрограммировании соматических клеток в ИПСК, локус Ink4a/Arf эпигенетически преобразуется в «молчащую» бивалентную форму с маркерами H3K27me3 и H3K4me3, что приводит к репрессии Ink4a/Arf локуса, который кодирует такие ингибиторы киназы клеточного цикла (CDK) как p16INK4A и p19Arf[110]. Прямо противоположный процесс наблюдается при индуцированном онкогеном RAF1 старении, когда киназа MSK1 (mitogen- and stress-activated kinase 1) осуществляет фосфорилирование серина 28 в гистоне H3K27me3, что вызывает удаление репрессорных комплексов PRC1/2 и активирует экспрессию локуса Ink4ab/Arf, приводящую к старению клетки[111].

Примечания

  1. ↑ Memories from the polycomb group proteins. (англ.) // Annual review of genetics. — 2012. — Vol. 46. — P. 561—589. — PMID 22994356. исправить
  2. The regulation of Hox gene expression during animal development. (англ.) // Development (Cambridge, England). — 2013. — Vol. 140, no. 19. — P. 3951—3963. — PMID 24046316. исправить
  3. A gene complex controlling segmentation in Drosophila. (англ.) // Nature. — 1978. — Vol. 276, no. 5688. — P. 565—570. — PMID 103000. исправить
  4. Polycombing the genome: PcG, trxG, and chromatin silencing. (англ.) // Cell. — 1998. — Vol. 93, no. 3. — P. 333—336. — PMID 9590168. исправить
  5. Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks? (англ.) // Philosophical transactions of the Royal Society of London. Series B, Biological sciences. — 2013. — Vol. 368, no. 1609. — P. 20110332. — PMID 23166395. исправить
  6. ↑ Cell reprogramming requires silencing of a core subset of polycomb targets. (англ.) // PLoS genetics. — 2013. — Vol. 9, no. 2. — P. e1003292. — PMID 23468641. исправить
  7. Polycomb complexes in stem cells and embryonic development. (англ.) // Development (Cambridge, England). — 2013. — Vol. 140, no. 12. — P. 2525—2534. — PMID 23715546. исправить
  8. Regulation of Genome Architecture and Function by Polycomb Proteins. (англ.) // Trends in cell biology. — 2016. — PMID 27198635. исправить
  9. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. (англ.) // Genes & development. — 2004. — Vol. 18, no. 13. — P. 1592—1605. — PMID 15231737. исправить
  10. The Role of RNAi and Noncoding RNAs in Polycomb Mediated Control of Gene Expression and Genomic Programming // RNA and the Regulation of Gene Expression: A Hidden Layer of Complexity. — Caister Academic Press, 2008. — ISBN ISBN 978-1-904455-25-7.
  11. The polycomb complex PRC1: composition and function in plants. (англ.) // Journal of genetics and genomics = Yi chuan xue bao. — 2013. — Vol. 40, no. 5. — P. 231—238. — PMID 23706298. исправить
  12. ↑ The Polycomb complex PRC2 and its mark in life. (англ.) // Nature. — 2011. — Vol. 469, no. 7330. — P. 343—349. — PMID 21248841. исправить
  13. Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt. (англ.) // The EMBO journal. — 2009. — Vol. 28, no. 13. — P. 1965—1977. — PMID 19494831. исправить
  14. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. (англ.) // Genes & development. — 2008. — Vol. 22, no. 20. — P. 2799—2810. — PMID 18923078. исправить
  15. ↑ Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. (англ.) // The Journal of biological chemistry. — 2011. — Vol. 286, no. 38. — P. 33061—33069. — PMID 21757686. исправить
  16. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. (англ.) // Nature. — 2010. — Vol. 465, no. 7295. — P. 243—247. — PMID 20436459. исправить
  17. PRC1 complex diversity: where is it taking us? (англ.) // Trends in cell biology. — 2014. — Vol. 24, no. 11. — P. 632—641. — PMID 25065329. исправить
  18. ↑ RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. (англ.) // Cell reports. — 2013. — Vol. 3, no. 1. — P. 60—69. — PMID 23273917. исправить
  19. A "complex" issue: deciphering the role of variant PRC1 in ESCs. (англ.) // Cell stem cell. — 2013. — Vol. 12, no. 2. — P. 145—146. — PMID 23395440. исправить
  20. Cbx proteins help ESCs walk the line between self-renewal and differentiation. (англ.) // Cell stem cell. — 2012. — Vol. 10, no. 1. — P. 4—6. — PMID 22226347. исправить
  21. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. (англ.) // Cell stem cell. — 2012. — Vol. 10, no. 1. — P. 47—62. — PMID 22226355. исправить
  22. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. (англ.) // Cell stem cell. — 2012. — Vol. 10, no. 1. — P. 33—46. — PMID 22226354. исправить
  23. Chromodomain antagonists that target the polycomb-group methyllysine reader protein chromobox homolog 7 (CBX7). (англ.) // Journal of medicinal chemistry. — 2014. — Vol. 57, no. 7. — P. 2874—2883. — PMID 24625057. исправить
  24. PMID 14574365. исправить
  25. High expression of p16INK4a and low expression of Bmi1 are associated with endothelial cellular senescence in the human cornea. (англ.) // Molecular vision. — 2012. — Vol. 18. — P. 803—815. — PMID 22509111. исправить
  26. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. (англ.) // Cell research. — 2011. — Vol. 21, no. 9. — P. 1305—1315. — PMID 21709693. исправить
  27. Bmi1 regulates mitochondrial function and the DNA damage response pathway. (англ.) // Nature. — 2009. — Vol. 459, no. 7245. — P. 387—392. — PMID 19404261. исправить
  28. microRNA-141 regulates BMI1 expression and induces senescence in human diploid fibroblasts. (англ.) // Cell cycle (Georgetown, Tex.). — 2013. — Vol. 12, no. 22. — P. 3537—3546. — PMID 24091627. исправить
  29. Cloning and chromosome mapping of the human Mel-18 gene which encodes a DNA-binding protein with a new 'RING-finger' motif. (англ.) // Gene. — 1993. — Vol. 129, no. 2. — P. 249—255. — PMID 8325509. исправить
  30. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. (англ.) // Molecular cell. — 2012. — Vol. 45, no. 3. — P. 344—356. — PMID 22325352. исправить
  31. Polycomb Group Protein Pcgf6 Acts as a Master Regulator to Maintain Embryonic Stem Cell Identity. (англ.) // Scientific reports. — 2016. — Vol. 6. — P. 26899. — PMID 27247273. исправить
  32. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. (англ.) // Molecular cell. — 2012. — Vol. 45, no. 3. — P. 344—356. — PMID 22325352. исправить
  33. RNA Helicase DDX5 Inhibits Reprogramming to Pluripotency by miRNA-Based Repression of RYBP and its PRC1-Dependent and -Independent Functions. Cell Stem Cell PMID 1906426. исправить
  34. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. (англ.) // The EMBO journal. — 1999. — Vol. 18, no. 7. — P. 1923—1938. — PMID 10202156. исправить
  35. The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development. (англ.) // Cell stem cell. — 2012. — Vol. 11, no. 3. — P. 319—332. — PMID 22770845. исправить
  36. Polycomb in stem cells: PRC1 branches out. (англ.) // Cell stem cell. — 2012. — Vol. 11, no. 1. — P. 16—21. — PMID 22770239. исправить
  37. DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation. (англ.) // Genes to cells : devoted to molecular & cellular mechanisms. — 2012. — Vol. 17, no. 3. — P. 218—233. — PMID 22280061. исправить
  38. Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. (англ.) // BioEssays : news and reviews in molecular, cellular and developmental biology. — 2011. — Vol. 33, no. 11. — P. 830—839. — PMID 21915889. исправить
  39. Molecular architecture of human polycomb repressive complex 2. (англ.) // eLife. — 2012. — Vol. 1. — P. e00005. — PMID 23110252. исправить
  40. ↑ Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin. (англ.) // Genes & development. — 2013. — Vol. 27, no. 24. — P. 2663—2677. — PMID 24352422. исправить
  41. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. (англ.) // Nature. — 2012. — Vol. 492, no. 7427. — P. 108—112. — PMID 23051747. исправить
  42. Molecular biology. EZH2 goes solo. (англ.) // Science (New York, N.Y.). — 2012. — Vol. 338, no. 6113. — P. 1430—1431. — PMID 23239724. исправить
  43. Epigenetic therapy leaps ahead with specific targeting of EZH2. (англ.) // Cancer cell. — 2012. — Vol. 22, no. 5. — P. 569—570. — PMID 23153531. исправить
  44. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. (англ.) // Science (New York, N.Y.). — 2014. — Vol. 343, no. 6176. — P. 1249—1253. — PMID 24626927. исправить
  45. The central role of EED in the orchestration of polycomb group complexes. (англ.) // Nature communications. — 2014. — Vol. 5. — P. 3127. — PMID 24457600. исправить
  46. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. (англ.) // Molecular cell. — 2010. — Vol. 38, no. 5. — P. 675—688. — PMID 20542000. исправить
  47. Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. (англ.) // Molecular cell. — 2014. — Vol. 53, no. 2. — P. 290—300. — PMID 24374312. исправить
  48. Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation. (англ.) // Molecular cell. — 2015. — Vol. 57, no. 5. — P. 769—783. — PMID 25620564. исправить
  49. PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. (англ.) // Stem cells (Dayton, Ohio). — 2011. — Vol. 29, no. 2. — P. 229—240. — PMID 21732481. исправить
  50. Polycomb repressive complex 2 in embryonic stem cells: an overview. (англ.) // Protein & cell. — 2010. — Vol. 1, no. 12. — P. 1056—1062. — PMID 21213100. исправить
  51. 10972765. — 10.1016/j.molcel.2015.12.008. исправить
  52. MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration. (англ.) // Histology and histopathology. — 2015. — Vol. 30, no. 11. — P. 1271—1282. — PMID 26062755. исправить
  53. 09628924. — 10.1016/j.tcb.2014.08.009. исправить
  54. Epigenetic regulation by long noncoding RNAs. (англ.) // Science (New York, N.Y.). — 2012. — Vol. 338, no. 6113. — P. 1435—1439. — PMID 23239728. исправить
  55. Gene regulation by the act of long non-coding RNA transcription. (англ.) // BMC biology. — 2013. — Vol. 11. — P. 59. — PMID 23721193. исправить
  56. Perspectives of Long Non-Coding RNAs in Cancer Diagnostics. (англ.) // Frontiers in genetics. — 2012. — Vol. 3. — P. 32. — PMID 22408643. исправить
  57. Kcnq1ot1: a chromatin regulatory RNA. (англ.) // Seminars in cell & developmental biology. — 2011. — Vol. 22, no. 4. — P. 343—350. — PMID 21345374. исправить
  58. Shaping the Genome with Non-Coding RNAs. (англ.) // Current genomics. — 2011. — Vol. 12, no. 5. — P. 307—321. — PMID 21874119. исправить
  59. Advances in understanding chromosome silencing by the long non-coding RNA Xist. (англ.) // Philosophical transactions of the Royal Society of London. Series B, Biological sciences. — 2013. — Vol. 368, no. 1609. — P. 20110325. — PMID 23166390. исправить
  60. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. (англ.) // Science (New York, N.Y.). — 2013. — Vol. 341, no. 6147. — P. 1237973. — PMID 23828888. исправить
  61. РНК ПОМОГАЮТ ИСКАТЬ РЕГУЛЯТОРНЫМ БЕЛКАМ НУЖНЫЕ ГЕНЫ
  62. Загадочное путешествие некодирующей РНК Xist по X-хромосоме
  63. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. (англ.) // Genes & development. — 2001. — Vol. 15, no. 9. — P. 1140—1151. — PMID 11331609. исправить
  64. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. (англ.) // Nature. — 2015. — Vol. 521, no. 7551. — P. 232—236. — PMID 25915022. исправить
  65. How an RNA gene silences a whole chromosome.. ScienceDaily, 27 April 2015
  66. RNA-mediated silencing mechanisms in mammalian cells. (англ.) // Progress in molecular biology and translational science. — 2011. — Vol. 101. — P. 351—376. — PMID 21507358. исправить
  67. HOTAIR lifts noncoding RNAs to new levels. (англ.) // Cell. — 2007. — Vol. 129, no. 7. — P. 1257—1259. — PMID 17604716. исправить
  68. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. (англ.) // Molecular cell. — 2010. — Vol. 38, no. 5. — P. 662—674. — PMID 20541999. исправить
  69. 2218-273X. — 10.3390/biom3010124. исправить
  70. Genome-wide identification of polycomb-associated RNAs by RIP-seq. (англ.) // Molecular cell. — 2010. — Vol. 40, no. 6. — P. 939—953. — PMID 21172659. исправить
  71. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. (англ.) // Nature. — 2010. — Vol. 465, no. 7295. — P. 175—181. — PMID 20418860. исправить
  72. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. (англ.) // Developmental cell. — 2013. — Vol. 24, no. 2. — P. 206—214. — PMID 23369715. исправить
  73. Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. (англ.) // Genome biology. — 2013. — Vol. 14, no. 9. — P. 104. — PMID 24070194. исправить
  74. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. (англ.) // Biochemical and biophysical research communications. — 2014. — Vol. 448, no. 3. — P. 315—322. — PMID 24388988. исправить
  75. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. (англ.) // Cancer letters. — 2013. — Vol. 333, no. 2. — P. 213—221. — PMID 23354591. исправить
  76. The imprinted H19 lncRNA antagonizes let-7 microRNAs. (англ.) // Molecular cell. — 2013. — Vol. 52, no. 1. — P. 101—112. — PMID 24055342. исправить
  77. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2013. — Vol. 110, no. 51. — P. 20693—20698. — PMID 24297921. исправить
  78. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. (англ.) // Genes & development. — 2014. — Vol. 28, no. 5. — P. 491—501. — PMID 24532688. исправить
  79. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. (англ.) // Cancer cell. — 2014. — Vol. 26, no. 3. — P. 344—357. — PMID 25203321. исправить
  80. 2041-1723. — 10.1038/ncomms7967. исправить
  81. REST interacts with Cbx proteins and regulates polycomb repressive complex 1 occupancy at RE1 elements. (англ.) // Molecular and cellular biology. — 2011. — Vol. 31, no. 10. — P. 2100—2110. — PMID 21402785. исправить
  82. REST and stress resistance in ageing and Alzheimer's disease. (англ.) // Nature. — 2014. — Vol. 507, no. 7493. — P. 448—454. — PMID 24670762. исправить
  83. Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. (англ.) // Molecular cell. — 2012. — Vol. 45, no. 3. — P. 330—343. — PMID 22325351. исправить
  84. Yin and yang of mediator function revealed by human mutants. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2012. — Vol. 109, no. 48. — P. 19519—19520. — PMID 23184968. исправить
  85. Cellular senescence and tumor suppressor gene p16. (англ.) // International journal of cancer. — 2012. — Vol. 130, no. 8. — P. 1715—1725. — PMID 22025288. исправить
  86. RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes. (англ.) // Molecular cell. — 2016. — Vol. 62, no. 6. — P. 875—889. — PMID 27211866. исправить
  87. NuRD and pluripotency: a complex balancing act. (англ.) // Cell stem cell. — 2012. — Vol. 10, no. 5. — P. 497—503. — PMID 22560073. исправить
  88. NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. (англ.) // The EMBO journal. — 2012. — Vol. 31, no. 3. — P. 593—605. — PMID 22139358. исправить
  89. Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. (англ.) // Genome research. — 2013. — Vol. 23, no. 1. — P. 60—73. — PMID 22964890. исправить
  90. PcG complexes set the stage for epigenetic inheritance of gene silencing in early S phase before replication. (англ.) // PLoS genetics. — 2011. — Vol. 7, no. 11. — P. e1002370. — PMID 22072989. исправить
  91. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. (англ.) // Cell. — 2012. — Vol. 150, no. 5. — P. 922—933. — PMID 22921915. исправить
  92. Holding on through DNA replication: histone modification or modifier? (англ.) // Cell. — 2012. — Vol. 150, no. 5. — P. 875—877. — PMID 22939615. исправить
  93. Lack of Transcription Triggers H3K27me3 Accumulation in the Gene Body. (англ.) // Cell reports. — 2016. — PMID 27396330. исправить
  94. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. (англ.) // Stem cells (Dayton, Ohio). — 2013. — Vol. 31, no. 7. — P. 1278—1286. — PMID 23533168. исправить
  95. Deterministic direct reprogramming of somatic cells to pluripotency. (англ.) // Nature. — 2013. — Vol. 502, no. 7469. — P. 65—70. — PMID 24048479. исправить
  96. A double take on bivalent promoters. (англ.) // Genes & development. — 2013. — Vol. 27, no. 12. — P. 1318—1338. — PMID 23788621. исправить
  97. Generation of bivalent chromatin domains during cell fate decisions. (англ.) // Epigenetics & chromatin. — 2011. — Vol. 4, no. 1. — P. 9. — PMID 21645363. исправить
  98. An autoregulatory mechanism imposes allosteric control on the V(D)J recombinase by histone H3 methylation. (англ.) // Cell reports. — 2015. — Vol. 10, no. 1. — P. 29—38. — PMID 25543141. исправить
  99. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. (англ.) // Nature structural & molecular biology. — 2013. — Vol. 20, no. 9. — P. 1093—1097. — PMID 23934151. исправить
  100. Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. (англ.) // Development (Cambridge, England). — 2010. — Vol. 137, no. 15. — P. 2483—2492. — PMID 20573702. исправить
  101. The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. (англ.) // Molecular cell. — 2014. — Vol. 53, no. 2. — P. 277—289. — PMID 24389103. исправить
  102. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. (англ.) // Cell. — 2012. — Vol. 151, no. 5. — P. 994—1004. — PMID 23159369. исправить
  103. Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. (англ.) // PLoS genetics. — 2011. — Vol. 7, no. 6. — P. e1002090. — PMID 21655081. исправить
  104. PRC2 during vertebrate organogenesis: a complex in transition. (англ.) // Developmental biology. — 2012. — Vol. 367, no. 2. — P. 91—99. — PMID 22565092. исправить
  105. EZH2 couples pancreatic regeneration to neoplastic progression. (англ.) // Genes & development. — 2012. — Vol. 26, no. 5. — P. 439—444. — PMID 22391448. исправить
  106. 2041-4889. — 10.1038/cddis.2011.84. исправить
  107. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. (англ.) // Stem cells and development. — 2013. — Vol. 22, no. 2. — P. 256—267. — PMID 22873822. исправить
  108. The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation. (англ.) // Stem cells and development. — 2014. — Vol. 23, no. 9. — P. 931—940. — PMID 24325319. исправить
  109. MSK1 triggers the expression of the INK4AB/ARF locus in oncogene-induced senescence. (англ.) // Molecular biology of the cell. — 2016. — Vol. 27, no. 17. — P. 2726—2734. — PMID 27385346. исправить

Литература

  • Vidal, M. (2014). Polycomb Complexes: Chromatin Regulators Required for Cell Diversity and Tissue Homeostasis. In Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development (pp. 95–139). Springer Berlin Heidelberg. ISBN 978-3-642-45198-0
  • Marianne Entrevan, Bernd Schuettengruber, Giacomo Cavalli (2016). Regulation of Genome Architecture and Function by Polycomb Proteins. Trends in Cell Biology, 26(7), 511–525 10.1038/nsmb.2848
  • Schwartz, Y. B., & Pirrotta, V. (2014). Ruled by Ubiquitylation: A New Order for Polycomb Recruitment. Cell reports, 8(2), 321-325. 10.1016/j.bbagrm.2014.02.007
  • Gozani, O., & Shi, Y. (2014). Histone Methylation in Chromatin Signaling. In: Fundamentals of Chromatin (pp. 213–256). Springer New York. 10.1007/978-1-4614-8624-4_5
  • Jeffrey A. Simon, Robert E. Kingston (2013) Occupying Chromatin: Polycomb Mechanisms for Getting to Genomic Targets, Stopping Transcriptional Traffic, and Staying Put. Molecular Cell, 49(5), 808—824 http://dx.doi.org/10.1016/j.molcel.2013.02.013
  • Di Croce, L., & Helin, K. (2013) Transcriptional regulation by Polycomb group proteins. Nature structural & molecular biology, 20(10), 1147—1155. doi:10.1038/nsmb.2669
  • Olsen, J. B., Greenblatt, J., & Emili, A. (2014). Histone Methyltransferase Complexes in Transcription, Development, and Cancer. In Systems Analysis of Chromatin-Related Protein Complexes in Cancer (pp. 33–47). Springer New York. 10.1089/omi.2012.0105
  • Anne Laugesen , Kristian Helin (June 2014). Chromatin Repressive Complexes in Stem Cells, Development, and Cancer. Cell Stem Cell, 14(6), 735—751 10.1016/j.tcb.2014.06.005
  • John W Whitaker, Zhao Chen & Wei Wang(2014). Predicting the human epigenome from DNA motifs. Nature Methods 10.1038/nmeth.3065
  • Beatrice Bodega, Chiara Lanzuolo (2016). Polycomb Group Proteins: Methods and ProtocolsПодробные, легко воспроизводимые лабораторные протоколы, а также советы как избежать известных ошибок.

См. также

Поликомб репрессорные комплексы.

© 2016–2023 lizinovka36.ru, Россия, Тюмень, ул. П.Каркатеевы 23, +7 (3452) 33-75-16